SABER latitude coverage versus time of year May 18, 2000 launch, 74.06 degree, 4:22 PM crossing.

SABER Instrument with Contamination Door Attached

SABER Instrument Performance Assessment

- Engineering tests and calibration show excellent off—axis rejection, excellent end-to-end linearity, and a well characterized temporal response.
- The IFOV at the Earth horizon is within or at specification in all channels
- The relative spectral response is within specifications in all channels and out-of-band rejection is within specifications in all but two channels. Response is known and will be included in the retrieval
- Noise equivalent radiance is within specifications in all but the long λ CO2 channels (1.3 to 1.5 times) and from 2 to 15 times better in all others.
- Combined retrievals using all three CO2 channels will place these channels within specfications

SABER Level 1B Calibrated, Spacecraft Motion Corrected Radiances

Tangent altitude radiance versus pressure for:

-	CO ₂ (v2)W	15 μ m
-	CO₂(υ2)N	15 μ m
-	O ₃(υ 3)	9.6 μ m
-	$O_2(^1\Delta)$	1.27 μ m
-	CO₂(∪3)	4.3 μ m
-	H ₂ O(υ2)	6.9 μ m
-	OH(υ =3,4,5)	1.6 μ m
-	OH(υ= 7 , 8 , 9)	2.06 μm
-	NO(υ)	5.3 μ m

SABER Level 2A Routine Data Products

• Vertical profiles of the following parameters:

-	Kinetic T, P, density	10 - 105 km	day and night
-	Altitude	10 - 200 km	day and night
-	O_3 mixing ratio (9.6 μ m)	15 - 100 km	day and night
-	O_3 mixing ratio (1.27 μ m)	50 - 95 km	day
-	H ₂ O mixing ratio	15 - 80 km	day and night
-	CO ₂ (4.3 μm) density	85 – 150 km	day
-	NO 5.3 μm VER [*]	100 - 180 km	day and night
-	OH 1.6 μm VER [*]	80 - 100 km	day and night
-	OH 2.0 μ m VER *	80 - 100 km	day and night
-	O₂(¹Δ) 1.27 μ m VER [*]	50 - 105 km	day and night

^{*} Volume Emission Rate

SABER Level 3 Data Products

- Zonal mean pressure versus latitude cross sections for all parameters
 - Daily, weekly, monthly, and seasonally averaged
- Polar stereographic maps on constant pressure and isentropic surfaces
 - Daily maps, weekly, monthly, and seasonally averaged maps

Activity	Science Team	GATS, Inc.
7 70	Responsibility	Assistance
Level 0	Gordley	Yunfei Wang
Level 1		
CO_2 (15 μ m)	Puertas	
O_3 (9.6 μ m)	Wintersteiner	
H_2O (6.9 μ m)	Eden	
NO (5.3 μm)	Mertens	
CO ₂ (4.3 μm)	Picard	
OH (2.0 μm)	Winick	
OH (1.6 μm)	Baker	
$O_2(^{1}\Delta) (1.27 \ \mu m)$	Mlynczak	
Level 2A		
T _k (P)	Gordley, Mlynczak	
ρ, Z	Picard	
O_3 (9.6 µm)	Remsberg, Russell, Siskind	
O_3 (1.27 µm)	Mlynczak	
H ₂ O	Russell, Remsberg, Siskind	
CO_2	Winick	
NO VER	Gordley	
OH 1.6 µm VER	Espy, Ulwick	
OH 2.0 µm VER	Ulwick, Espy	
$O_2(^1\Delta) 1.27 \ \mu m \ VER$	Baker	
2(2) 1127 pm 121	Бакег	
Level 2B		
$T_k(P), \rho$	Gordley, Mlynczak	
[O], [H]	Baker, Espy, Ulwick	
Geostrophic wind	Garcia	
Cooling rates, Solar	Mlynczak	
and Chemical heating rates		
Level 3	Garcia, Roble, Solomon	

Potential SABER Ground-based Collaborations

- "Direct" [O] and [H] measurements (e.g. using resonance lamp) in the 80
 100 km altitude range would significantly augment energetics and chemistry investigations
- Correlative Lidar temperature measurements in the 50 100 km range for validation studies
- Correlative rocket measurements of O_3 , $O_2(^1\Delta)$, OH(v), OH(v), OH(v), OH(v) for validation studies
- Hydroxyl rotational temperatures for validation in the 80 100 km range
- Ground-based microwave measurements of H₂O, O₃, and NO for validation studies
- Ground-based zenith column emission due to $O_2(^1\Delta)$ and SABER OH bands for comparison to SABER calculated values from volume emission rate data (absolute calibration of ground-based instruments essential)
- Lidar heat flux measurements to complement SABER solar and chemical heating and infrared cooling determinations